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A TTF derivative with an N1-tert-butyluracil moiety, TtbU,
was prepared as a new electron-donor molecule capable of mul-
tiple hydrogen-bondings. Formation of the two different types of
double hydrogen-bonding motifs, Watson–Crick and reverse
Watson–Crick types, was demonstrated for the first time be-
tween TtbU and its I3

� salt in the crystalline states.

In the field of organic conducting materials, hydrogen-bond-
ed (H-bonded) charge transfer (CT) complexes and salts based
on tetrathiafulvalene (TTF) derivatives are actively investigated
in view of not only crystal engineering1 but also control of
donor/acceptor ratio and electronic properties such as ionicity
of component molecules.2–4 Focusing on nucleobases capable
of multiple H-bondings, we recently reported design and synthe-
sis of a TTF derivative with an N1-n-butyluracil moiety, TnbU.5

Considering the H-bonding motifs in the dimer of uracil moiety,
three kinds of double H-bondings, Watson–Crick (3,4–3,4), re-
verse Watson–Crick (2,3–2,3), and their mixed types (2,3–
3,4), can be formed.5,6 In this context, energy differences in
dimers of uracil itself are reported to be small by quantumn
chemical calculations.7 In fact, the H-bonded dimers of both
types were exemplified in minor modification of molecular
structures and of the condition of crystallization.8,9 In the course
of studies on a series of N1-alkyluracil derivatives of TTF for
designing molecule-based organic conductors, we have found
transformation of H-bonding motifs in the uracil moiety by
redox change from neutral state to radical cation state in a new
TTF derivative with a N1-tert-butyluracil moiety, TtbU.10 Here,
we report on the first demonstration of the different H-bonding
motifs in the crystals of TtbU and its I3

� salt.
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TtbU was synthesized by the Stille coupling reaction with
tributylstannylated-TTF and N1-tert-butyl-5-iodouracil (2) pre-
pared from N1-tert-butyluracil (1)11 (Scheme 1).12 An oxidation
potential of TtbU was evaluated by cyclic voltammetry (CV)
in DMF solution, and TtbU exhibited two-stage one-electron
oxidation waves.13

Single crystals of TtbU suitable for X-ray structure analysis
were obtained by vapor diffusion method using DMF–water.14

Dihedral angle between the TTF and uracil moieties is 4�, and
the whole skeleton of TtbU is almost planar. Complementary
double H-bondings of the Watson–Crick type were formed be-

tween the uracil moieties (NH���O, 2.86 �A, Figure 1). Further-
more, there is a ����� interaction between the two TtbU mole-
cules (see Supporting Information).

The I3
� salt of TtbU, TtbU�þ.I3�.(ClCH2CH2Cl)0:5, was

prepared by diffusion method using ClCH2CH2Cl solutions of
TtbU and I2, and X-ray structure analysis was conducted.14

Dihedral angle between the TTF and uracil moieties is 25�,
and TtbU�þ is more twisted compared with TtbU, while confor-
mation between the TTF and uracil moieties is the same as that
of TtbU. An H-bonded dimer with the reverse Watson–Crick
type was formed between the uracil moieties of TtbU�þ (NH���O,
2.84 �A, Figure 2a). Furthermore, there is a �-dimer of TtbU�þ in
head-to-tail fashion with an interplanar distance of 3.2 �A as well
as several short S���S and S���I contacts, resulting in a two-dimen-
sional layer structure (Figure 2b). Difference of H-bonding
motifs in the two crystal structures is also confirmed by IR spec-
tra in KBr (Figure 3).5 The carbonyl stretching frequency of the
4-position in the uracil moiety markedly shifted from 1654 to
1676 cm�1 upon oxidation, showing clear change of H-bonding
motifs in the uracil moiety. This I3

� salt was insulator with low
electric conductivity below 10�8 S cm�1.

To investigate origin of the unique transformation of H-
bonding motifs by redox change, we have carried out density
functional theory calculations based on the crystal structures
of TtbU and TtbU�þ, showing the large HOMO and SOMO co-
efficients on the TTF moieties, respectively (Figure 4 and see

N•••O, 2.86 Å

Figure 1. Crystal structure of TtbU. Double H-bondings with Watson–
Crick type were formed between the uracil moieties. Hydrogen atoms
except that for the N–H group of the uracil moiety are omitted for clarity.
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Scheme 1. Synthetic method of TtbU. Reagents and conditions: a)
2 equiv. ICl, MeOH, 50 �C; b) n-BuLi, THF, �78 �C; then ClSnBu3,
�78 �C; c) 10mol% Pd(PPh3)4, toluene, 110

�C.
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Supporting Information). Experimentally, the difference of bond
lengths of the uracil moieties between TtbU and TtbU�þ is
0.001–0.017 �A, being small but significant magnitude (see
Supporting Information). In addition to these intramolecular

factors, influence of counter ions, crystal packing, and other in-
termolecular non-covalent interactions cannot be excluded.
Thus, the origin of the transformation of the H-bonding motifs
is not clear at present.

In summary, we have demonstrated that the different double
H-bonding motifs between the uracil moieties were formed be-
tween TtbU and its I3

� salt in the crystalline states. From the
viewpoints of crystal engineering and electronic modulation,
clarification of the relationship between H-bonding interactions
and ionic characters of the molecules will bring important infor-
mation to control and predict crystal structures, and study is now
going along this line.
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Figure 2. Crystal structure of TtbU�þ.I3�.(ClCH2CH2Cl)0:5. (a) H-
bonded dimer of TtbU�þ formed between the uracil moieties and (b)
two-dimensional layer structure through �-dimer with an interplanar dis-
tance of 3.2 �A, several S���S (green dotted line) and S���I contacts (orange
dotted line). Hydrogen atoms except that for the N–H group of the uracil
moiety are omitted for clarity.
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Figure 3. IR spectra of (a) TtbU and (b) TtbU�þ.I3�.(ClCH2CH2Cl)0:5
in the frequency region from 1500 to 1800 cm�1 in KBr pellets. Their IR
spectra in the region from 500 to 4000 cm�1 are shown in Supporting
Information.

Figure 4. HOMO of TtbU. The calculation was carried out at the
RB3LYP/6-31G(d) level of theory based on the crystal structure of TtbU.
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